# By convention, the _start symbol specifies the ELF entry point.
# Since we haven't set up virtual memory yet, our entry point is
# the physical address of 'entry'.
.globl _start
_start = V2P_WO(entry)
# Entering xv6 on boot processor, with paging off.
.globl entry
entry:
# Turn on page size extension for 4Mbyte pages
movl %cr4, %eax
orl $(CR4_PSE), %eax
movl %eax, %cr4
# Set page directory
movl $(V2P_WO(entrypgdir)), %eax
movl %eax, %cr3
# Turn on paging.
movl %cr0, %eax
orl $(CR0_PG|CR0_WP), %eax
movl %eax, %cr0
# Set up the stack pointer.
movl $(stack + KSTACKSIZE), %esp
# Jump to main(), and switch to executing at
# high addresses. The indirect call is needed because
# the assembler produces a PC-relative instruction
# for a direct jump.
mov $main, %eax
jmp *%eax
.comm stack, KSTACKSIZE
在这边我们姑且不再看究竟干了什么,源码的阅读我希望放在后面一些些,首先解决这边的作业题目:
Begin by restarting qemu and gdb, and set a break-point at 0x7c00, the start of the boot block (bootasm.S). Single step through the instructions (type si at the gdb prompt). Where in bootasm.S is the stack pointer initialized? (Single step until you see an instruction that moves a value into %esp, the register for the stack pointer.)
最早是在这个地方进行初始化的,设置esp为0x7c00。
Single step through the call to bootmain; what is on the stack now?
What do the first assembly instructions of bootmain do to the stack? Look for bootmain in bootblock.asm.
这也没啥好找的,本质上跟一下就好了
Continue tracing via gdb (using breakpoints if necessary -- see hint below) and look for the call that changes eip to 0x10000c. What does that call do to the stack? (Hint: Think about what this call is trying to accomplish in the boot sequence and try to identify this point in bootmain.c, and the corresponding instruction in the bootmain code in bootblock.asm. This might help you set suitable breakpoints to speed things up.)